

Modeling Growth of SAT Reading Performance using Repeated Measures Data

Annual Meeting of National Council on Measurement in Education

New York, NY

March 27, 2008

Hui Deng and Andrew Wiley

The College Board

connect to college success™ www.collegeboard.com

Background

- Each year, over a million high school students take the SAT. Nearly one-half of them take the test more than once.
- SAT score change analyses have focused on tracking average score differences of student cohorts from year to year.
- It is also important to examine growth trajectories of students' performance using repeated measures data.

Growth Models

Two types of the models have gained prominent use:

The multilevel growth models

- Assume a single population growth model
- Allow variation across individuals in the growth parameters

The growth mixture models

- Allow for different subpopulation growth trajectories
- Estimate random effects for within-class variation
- A more flexible analysis framework.

Purpose of the Study

- The study aimed to explore the growth trajectory of SAT Reading scores, examine the amount of variation across students, and the influence of demographics on the growth parameters.
- In addition, the study aimed to explore whether there exists latent classes of growth that can be described by different growth trajectories.

Data (1)

- A sample of 3000 students from the 2007 college bound seniors who took SAT at least three times.
- Stratified sampling using target proportions of gender and ethnic groups based on the cohort.
- 84.4% of students in the sample took the test 3 times, 12% took the test 4 times, and 3.6% took the test 5 to 10 times. The ages of students taking each test ranged from 14.6 to 20.8 years old.
- The students had varying number of test scores and varying spacing of test occasions.

Data (2)

- Computed each student's actual age (to the nearest month) when taking the test each time, as temporal indicator for each test score.
- Gender and several ethnic characteristics were dummy coded and used as covariates in modeling growth:

```
Gender (1=Male, 0=Female)
```

White (1=White, 0=not White)

Black (1=Black, 0=not Black)

Asian (1=Asian, 0=not Asian)

Hispanic (1=Hispanic, 0=not Hispanic)

Analyses (1)

Unconditional linear growth model:

Level-1:

$$Y_{ij} = \alpha_{0j} + \alpha_{1j} (TIME)_{ij} + r_{ij}$$

Level-2:

$$\alpha_{0j} = \beta_{00} + u_{0j}$$

$$\alpha_{1j} = \beta_{10} + u_{1j}$$

Analyses (2)

Conditional linear growth model:

Level-1:

$$Y_{ij} = \alpha_{0j} + \alpha_{1j} (TIME)_{ij} + r_{ij}$$

Level-2:

$$\alpha_{0j} = \beta_{00} + \beta_{01}x_{1j} + \beta_{02}x_{2j} + \dots + \beta_{0n}x_{nj} + u_{0j}$$

$$\alpha_{1j} = \beta_{10} + \beta_{11}x_{1j} + \beta_{12}x_{2j} + \dots + \beta_{1n}x_{nj} + u_{1j}$$

Analyses (3)

The Growth Mixture Model (GMM):

$$Y_{ij|(C_i=c)} = \alpha_{0cj} + \alpha_{1cj} (TIME)_{ij} + r_{icj}$$

$$\alpha_{c0j} = \beta_{c00} + \beta_{c01} x_{1j} + \beta_{c02} x_{2j} + \dots + \beta_{c0n} x_{nj} + u_{c0j}$$

$$\alpha_{c1j} = \beta_{c10} + \beta_{c11} x_{1j} + \beta_{c12} x_{2j} + \dots + \beta_{c1n} x_{nj} + u_{c1j}$$

Parameter estimates for the traditional growth models

	I	Model-1]	Model-2			Model-3	
Random Varian	Estimate	SE	Pr	Estimate	SE	Pr	Estimate	SE	Pr
Intercept	8066.60	542.14	<.0001	8051.07	310.61	<.0001	7621.38	299.05	<.0001
time	176.29	54.90	0.0007	174.87	30.33	<.0001	156.82	29.20	<.0001
Residual	1220.22	23.08	<.0001	1220.19	21.94	<.0001	1216.77	21.84	<.0001
Fixed Effects									
Intercept	430.59	3.06	<.0001	433.70	4.23	<.0001	408.39	7.52	<.0001
time	28.77	0.99	<.0001	29.66	1.39	<.0001	32.15	2.48	<.0001
gender				-7.08	6.13	0.2483			
time*gender				-1.75	1.99	0.3788			
black							-11.27	11.95	0.3457
white							43.27	8.57	<.0001
asian							1.26	12.29	0.9185
hispanic							4.00	12.46	0.7482
time*black							-13.19	3.90	0.0007
time*white							-5.25	2.82	0.0624
time*asian							9.97	3.99	0.0126
time*hispanic							-3.83	4.08	0.3480

Comparison of class formation for the Growth Mixture Model

	Loglikelihood	df	AIC	BIC
1 class	-41402.392	16	82836.8	82930.172
2 class	-41374.677	25	82799.4	82945.272
3 class	-41409.322	34	82886.6	83085.094

Logistic regression odds ratio for Class 1 on covariates

Covariate	Odds ratio
Gender	1.4
White	32.4
Black	0.1
Asian	3.6
Hispanic	0.1

Frequency and percentage of students in each latent class by ethnic group

			Class 1			Class 2	
Ethnic (Group	N	% against class	% against group	N	% against class	% against group
White	1	1414	78%	100%	6	1%	0%
vv inte	0	396	22%	36%	716	99%	64%
Black	1	7	0%	3%	250	35%	97%
	0	1803	100%	79%	472	65%	21%
Asian	1	207	11%	86%	35	5%	14%
	0	1603	89%	70%	687	95%	30%
Hispanic	1	7	0%	2%	288	40%	98%
1110 puint	0	1803	100%	81%	434	60%	19%

Parameter estimates from the 2-class Growth Mixture Model

		Estimate	P-Value
Class 1			
	Intercept	503.0	0.000
	Slope	35.8	0.000
	Residual vria	nces	
	Intercept	6709.6	0.000
Class 2			
	Intercept	394.3	0.000
	Slope	23.0	0.000
	Residual vria	nces	
	Intercept	6509.2	0.000
Covariate e	ffects		
Intercept			
	Gender	16.8	0.527
	White	-27.7	0.019
	Black	-1.5	0.929
	Asian	45.0	0.004
	Hispanic	19.3	0.168
Slope	_		
_	Gender	-0.6	0.952
	White	-11.4	0.000
	Black	-4.9	0.000
	Asian	-6.3	0.000
	Hispanic	4.1	0.000

Summary of results

- Large variability in intercept and slope parameters among students.
- Gender did not account for much variation in growth parameters.
- Ethnicity accounted for a portion of variation in intercept and slope. There was significant intercept effect for White and significant slope effect for Black.
- Growth Mixture Modeling revealed 2 latent subpopulations of different growth trajectories. Class 1 primarily consists of White and Asian, with higher average intercept and higher slope than Class 2 which primarily consists of Black and Hispanic students.
- The GMM results identified a significant intercept effect for Asian, and significant slope effects for White, Black, Asian, and Hispanic.

Discussion

- Results and interpretations were conditioned on the 2007 cohort data. Need cross-validation with data form other cohort year.
- The modeling approach and selection of covariates were exploratory in nature. More in-depth examinations are needed.
- Future studies need to include other predictors, especially variables related to student academic background. Variables at school level can also be explored.
- Future studies can explore a outcome variable (e.g., the first year GPA in college) in the growth mixture model.

